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A continuum model is presented for studying various growth processes. One of the model equations is
used to define a growing interface with an arbitrary topology and captures the intrinsic dynamics of the
aggregate with surface diffusion incorporated in a natural manner. With an appropriate local growth
mechanism, this model represents a continuum version of the Eden growth model. The introduction of
another field describing the dynamics of the vapor enables the modeling of phenomena ranging from
ballistic deposition to diffusion-limited aggregation (DLA) within the framework of the same equations.
Our equations capture nonlocal effects, such as shadowing or screening in a local way, and permit the
monitoring of the interior structure of the growing film. Our results are benchmarked against those of
experiments on sputter deposited films. Simple modifications of the model lead to patterns that are
different from standard DLA structures but similar to those observed in electrochemical deposition. We
also examine models that use the no-overhang approximation in the description of columnar morpholo-
gy observed in thin films and discuss their validity in comparison with our model.

PACS number(s): 81.10.Aj, 05.40.+j, 64.60.Ht, 05.70.Ln

I. INTRODUCTION

The dynamics and morphology of growing clusters and
films have been the focus of intense research in the last
decade [1]. Interest in this field is driven primarily by two
factors. First, growth processes, especially involving
molecular beam epitaxy (MBE) or sputter deposition, are
technologically important. Second, these growth pro-
cesses are a prototype of fundamental problems in non-
equilibrium statistical physics that often do not have a
Hamiltonian formulation.

A wide variety of processes, both natural and techno-
logical, lead to intricate structures having complex mor-
phologies. However, many of them show striking simi-
larities suggesting an underlying universality. Examples
include biological growth, corrosion, electrodeposition,
fluid flow through porous media, vapor deposition, aggre-
gation processes, crystal growth, the propagation of flame
fronts, and directed polymers in a random medium.

A fundamental question is whether these seemingly
diverse systems have an underlying universality—are
they described by the same physics? In recent years,
some progress has been made toward answering this
question by means of experiment, analytic theories, and
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computer simulations. Scaling regions and universality
classes have been identified for the simplest class of
problems—those that do not involve nonlocal effects [2]
such as screening or shadowing. However, it is interest-
ing to note that disagreements remain between theory
and experiment [1].

One example of universal behavior is observed in thin
films prepared under low adatom mobility. They have
common morphologies, relatively independent of materi-
al composition [3—-9]. Changes in the morphology of thin
films are directly linked to corresponding wide variations
in their resulting physical properties, and have important
ramifications in applications such as coated cutting tools,
optical coatings, and optical and magnetic storage media.
Another example of such universality is observed in pro-
cesses such as viscous flow and electrochemical deposi-
tion [10-18]. In those cases, growing clusters can be de-
scribed within the framework of diffusion-limited aggre-
gation (DLA) [10]. In vapor-deposited films or DLA-
type phenomena, nonlocal effects play a crucial role in
determining the dynamics of growth and the resulting
morphology.

The modeling of the growth of stochastic interfaces
can be classified into two major categories.

(i) Discrete “toy” models where particles move and are
deposited according to physically motivated rules—
examples include a number of solid models [1], ballistic
deposition [19], and the original DLA model [10]. The
discrete description does not incorporate surface diffusion
in a natural way.

(ii) A continuum description of the growth by use of
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partial differential equations (PDE’s) [1]. Usually the po-
sition of the interface is represented as a single-valued
function of the substrate coordinates (no-overhang ap-
proximation). This approach is accessible to analytical
treatment usually by dynamical renormalization group
(RG) methods, but is limited to the no-overhang approxi-
mation and does not accommodate nonlocal effects.

More realistic molecular dynamics simulations [20] are
limited to small sizes of the system. A majority of the ap-
proaches to growth modeling disregards the morphology
of the aggregate interior and focuses exclusively on the
interfacial structure.

In this paper we present the results of a detailed study
of a model that was introduced in our recent publications
[21-23] and which is able to provide a unified picture of
several growth processes. In addition, we analyze other
models that describe the morphology of the growing films
within a no-overhang approximation, and discuss their
validity by comparing these results with our findings. We
build our model on the basis of simple physical require-
ments. Our model is a continuum approach that allows
for an arbitrary topology of the interface, contrary to the
computationally convenient but not always justified no-
overhang approximation. Further, surface tension is in-
corporated into our model in a natural manner. The
model enables the study of different dynamics of the va-
por depositing on the aggregate. Nonlocal effects like
shadowing or screening are included in a local way. We
can also monitor the structure of the interior of the ag-
gregate. Our model is able to describe phenomena such
as Eden growth, ballistic deposition, and DLA within the
framework of the same equations.

In Sec. II we introduce a model with a phase field
whose dynamics corresponds to that of a conserved order
parameter. Two equilibrium values of the field describe
the aggregate and the vapor regions. This allows one to
define the interface with an arbitrary topology and builds
the correct physics for surface tension (it takes into ac-
count both surface and bulk diffusion). With a local
growth term characterized by a constant rate of aggrega-
tion per unit length of the interface, our model is in the
Kardar-Parisi-Zhang universality class [24]. However, if
the local growth rate depends on the interfacial curvature
we observe different dynamics of the growth. In Sec. III,
in addition to the field describing the dynamics of the in-
terface, we introduce another field to incorporate the dy-
namics of the vapor and nonlocal effects. The coupling
between the two fields provides for the growth of the ag-
gregate at the expense of the vapor. In this section we
study the growth with ballistic trajectories of the incom-
ing atoms. We observe changes in the morphology on
varying the strength and angle of the incoming rain. Our
results are benchmarked against those of experiments on
sputter-deposited films. Section IV discusses models that
attempt to explain the columnar morphology observed in
thin films within the no-overhang approximation. We ex-
tend the model proposed by Golubovic and Karunasiri
[25] to situations in which the incidence of the incoming
vapor is oblique. Finally, Sec. V considers the descrip-
tion of DLA-type phenomena within the framework of
our model. In particular, a comparison with the patterns

produced in experiments on electrochemical deposition
[18] is presented.

II. CONTINUUM GROWTH MODELS
WITH AN ARBITRARY TOPOLOGY
OF THE INTERFACE

A simple continuum model that is believed to capture
the physics of processes such as ballistic deposition [19]
(in the basic version, particles follow linear trajectories
and stick to the aggregate upon the first encounter), or
the Eden model (each point adjacent to the aggregate in-
terface is equally likely to grow) is the Kardar-Parisi-
Zhang (KPZ) [24] equation

oh
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where the height A (x,?) is a single-valued function of the
spatial coordinate x, and v is a height diffusion term that
could describe the influence of a gravitational field acting
on the aggregate or the effects of the evaporation-
condensation process. The A term describes the growth
normal to the interface [the lowest order nontrivial term
in a (Vh)? expansion], and 7 is a Gaussian noise with zero
mean and {7(x,t)n(x’,t'))=2D8%x—x')8(t—1t'). Sur-
face diffusion can be incorporated into Eq. (1) by adding a
—kV*h term to the right hand side of the equation. The
surface diffusion term is responsible for local smoothing
of the interface—however, in the large length scale limit
its effects are irrelevant as long as the other two terms are
not identically zero.

In this section we present a simple local continuum
model that allows for overhangs and arbitrary topology
of the growing interfaces. The model captures surface
diffusion in a natural manner and, with an appropriate
aggregation mechanism, it produces growth normal to
the interface. The model equation consists of two parts;
the first is a conserved order parameter dynamics that al-
lows for the definition of a topologically unrestricted in-
terface and builds the correct physics of surface diffusion,
whereas the second term provides the growth and
roughening at the interface.

Our equations are

=vV2h+%(Vh)2+n(r,t) , (1)

3f(r,t) _ 2 OF
-——————-at v —Sf(r,t) +I, (2)
where
4
F=[ | =2+ Lvawpr|an . 3

Equation (2) without the I term has a simple
interpretation —it is merely the deterministic part of the
standard model B dynamics [26] that conserves the order
parameter.

The choice of the sign of the coefficient of f2 in the ex-
pansion for the free energy (3) corresponds to a tempera-
ture lower than T,, so that the two values of the order
parameter f(r,?) minimizing the free energy describe the
two equilibrium phases of the system. The equilibrium
values of the order parameter have been set to =1 by an
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appropriate choice of its units of measurement.

In d =1+1, the vector r has two components x and z,
whereas in d =2+1, r=(x,y,z). In our numerical study
of Eq. (3) we use as the initial configuration for f the
equilibrium profile that satisfies the equation 6F /§f =0
with boundary conditions lim,  _ f==1. These
boundary conditions are maintained during the growth.

An interface can naturally be defined as the crossover
region between the f=—1 and f =+1 regions— and,
operationally, a point r; is defined to be on the surface
when f(r;,t)=0. a >0 is the surface diffusion coefficient
and sets the intrinsic length in the system. Indeed, the
width of the interface is proportional to Va. Also, the
effective strength of the surface tension turns out to be
proportional to Va. By an appropriate choice of time
scale, the mobility coefficient I' may be set [27] equal to
1.

The I term allows for the growth and fluctuations of
the interface. We utilize two different forms of the 7

term:

I =C,|Vf|+D VIV fin(rt) 4)
and

IZ:IVf|2[C2+D277(r’t)] ’ (5)

where 7 is a Gaussian noise uncorrelated in time and
space with a width equal to 1, and a mean value 0. In
both growth terms, the V f factor ensures that the growth
and fluctuations are operative only in the vicinity of the
interface—away from the interface Vf is equal to zero.
The positive coefficients C and D are the magnitudes of
the growth and noise, respectively. The growth term is
restricted to the region | f| < b, where b is close to but less
than 1. In the region filled by the aggregate the f value
fluctuates around f=+1 so that, without this restric-
tion, the positive contribution from the growth term
causes an unbounded increase of f above the equilibrium
value especially for the long runs. In the majority of our
runs we used b=0.9. The Vf factor also produces
growth normal to the interface, which is illustrated in
Fig. 1. The evolution of an initial rectangular bump
shows that the growth is normal to the interface with the
initially sharp corners being smoothed by the surface
diffusion.

The numerical results show that our model with the I,
growth mechanism is in the same universality class as the
KPZ equation, whereas the model with an I, growth
term exhibits different dynamical scaling behavior. The
I, growth mechanism not only gives growth normal to
the interface, but also the rate of the growth per unit
length is constant along the interface, equal to

C, f ;::‘IV flds=2bC,, where the integral is performed

across the interface and s.;, and s,,, are defined by
S(Smin)=—b and f(s_,,)=D>b (note that the integral is in-
dependent of the shape of the Vf profile as long as f in-
creases monotonically from f=-—1 to f=+1). This
feature leads to KPZ-like behavior.

We use a model with local conservation to avoid the
formation of islands with f=—1 in the region predom-
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FIG. 1. Sequence of interfaces generated from Eq. (2) with
the I, growth mechanism noise term turned off, and a‘—‘% in

d =1+ 1 showing the evolution of rectangular bump.

inantly with f=+1, and vice versa. The conserved and
nonconserved models should exhibit interfaces with the
same behavior. In the Appendix, we will show that the
nonconserved version of the I, model is equivalent to the
KPZ equation when the interface is sharp, i.e., a is small.

Thus we may interpret the I, growth as a continuum
version of the Eden growth model, with a redistribution
of the aggregated particles via surface diffusion.

The Eden model is known to be in the KPZ universali-
ty class—the surface diffusion in the limit of large length
scales does not change the geometrical properties of the
interface, but introduces a short range smoothing mecha-
nism.

The I, growth mechanism does not have the property
of a uniform growth rate. The effective growth, as our
results show, depends on the local curvature of the inter-
face, and leads to an increase of the growth exponent 3
with time.

We studied our model in d =1+1 and d =2+ 1 dimen-
sions. We have solved Eq. (2) on a square lattice (cubic in
d=2+1) with a lattice constant equal to 1. In our nu-
merical solution we used Euler’s method with an integra-
tion time step of 0.01 in order to avoid numerical instabil-
ities [27]. Statistically similar results were found for
several runs in which the time step was reduced by a fac-
tor of 2. The Laplacian term in our simulations was cal-
culated as

Af= —qf(r,1),

> frant)
NN

where the sum is performed over the nearest neighbors,
and ¢ is the coordination number equal to 4 in d=1+1
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and 6 in d =2+ 1, respectively. An interpolation scheme
to locate the interface leads to a resolution an order of
magnitude finer than the lattice constant. We use period-
ic boundary conditions in a direction transverse to the in-
itially flat interface located in the middle of the sample.
The edges of the system in the growth direction z, having
the values f==1 were matched with antiperiodic bound-
ary conditions. Typical values of C (the growth term)
and D (the noise term) were of order 1. Smaller values of
these parameters lead to the roughness being smaller than
V'a, the natural width of the equilibrated interface,
whereas values of the parameters several times larger lead
to instabilities in the numerical solution of Eq. (2).

Figure 2 shows typical profiles of the evolving interface
with the I, growth mechanism. The interface has
overhangs—they occasionally merge, leaving holes
behind. The holes are filled up due to the growth mecha-
nism and do not play any role in the further evolution of
the interface. Similar interfacial profiles are obtained
with the I, growth term. Figure 3 shows a power law
growth of the width of the interface— W in d =1+1 and
d=2+1 for the I, growth mechanism (W «t? at early
stages of the aggregation). A least squares linear fit of the
log-log plot gives the growth exponent 3=0.34+0.01 in
d=1+1 and f=0.24+0.02 in d =2+ 1. At saturation,
the width of the interface scales with the lateral size of
the substrate W < L*. The estimate for the exponent « in
d=1+1 is 0.51+0.03. These results are in agreement
with the exact solution of the KPZ equation [24] in
d=1+1,B=14,and a=1. The B exponent ind =2+1is
consistent with the numerical solution of the KPZ equa-
tion and the Kim-Kosterlitz estimates [28]. The data are
averages over 100 systems in d =1+ 1, and ten systems in
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FIG. 2. Sequence of the interfaces generated from Eq. (2)
every 15 time units with the I, growth mechanism and a=%
and d =1-+1. The location of the interface was determined by
solving for f=0. The third contour from the bottom has a hole
at the boundary, where periodic boundary conditions are ap-
plied.
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FIG. 3. Interface width as a function of time for a=1, I,
growth mechanism. Upper data correspond to d=1+1, and
lower to d =2+ 1. Data are for lateral size 100 in d=1+1 and
40X 40 in d =2+1. Data are averaged over 100 and ten runs,
respectively.
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FIG. 4. (a) Log-log plot of width vs time for the I, growth
mechanism with a=1 in d=1+1; the lateral size is 100. (b)
Average value of (Vf)? vs curvature of the interface
(—V-Vf/|Vf]); data are averages for 30 samples, and all other
parameters are the same as in (a).
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d=2+1. Due to computational limitations we were un-
able to estimate ¢ ind =2+1.

Figure 4(a) shows the growth of the roughness vs time
on a log-log scale for the I, growth mechanism (data are
averages over 100 samples). The saturation width of the
interface scales as L%3%%93 which is, within the statisti-
cal error, the same exponent as in the I; growth mecha-
nism. However, the dynamical behavior is different. The
B exponent increases from 0.3 initially to 0.5 at the larg-
est time we access in our simulations. In order to under-
stand the origin of this phenomena, we study the correla-
tion between V f and the curvature of the interface,

vf
VSl

(note that the Vf vector is directed toward the f=1 re-
gion). Figure 4(b) shows a plot of the average value of Vf
vs curvature. In the negative curvature region, Vf is fair-
ly constant, while in the positive region it increases
sharply with curvature. The higher value of Vf corre-
sponds to a steeper crossover from the f=—1 to the
f =1 region, and it translates into a larger growth rate
per unit length in the positive curvature region. Figure
4(b) suggests that the more advanced parts of the inter-
face have steeper crossover between the two phases of the
f field, while the zero and negative curvature regions
have this crossover smoothed out since they have more
time to be relaxed by the surface tension. Initially, when
the curvature is low, B is close to the 1 value. Later the
effects of the large curvature speed up the roughening of
the interface. If the growth mechanism is proportional to
an even higher power of Vf, one may expect behavior
analogous to ‘““dielectric breakdown” with high curvature
regions growing much more rapidly than the rest of the
interface.

In this section we have introduced a simple model de-
scribed by Egs. (2) and (3) that provides a simple frame-
work for a description of the dynamics of interfaces hav-
ing arbitrary topologies. The simple analog of the KPZ-
type dynamics shows that the presence of overhangs does
not produce a new universality class. Nevertheless as
shown in Sec. III, overhangs do play a crucial role in a
detailed description of the morphology of the aggregate,
and they influence the structure of the interface when
nonlocal effects are important. We have shown in this
section that even within a local growth model, if the
growth rate is a function of the curvature, the dynamics
of the interfacial evolution is altered from KPZ-type
behavior.

-V (6)

ITII. BALLISTIC DEPOSITION

In Sec. II, we introduced a model with a local growth
mechanism that allows for an arbitrary topology of the
interface. The growth of real surfaces is often influenced
by nonlocal effects like screening or shadowing. When
the aggregating particles follow linear trajectories one
can expect that, if the roughness is large enough, some
parts of the interface are shadowed and, therefore, do not
grow. In order to accommodate this phenomenon we

now extend our model to incorporate the dynamics of the
depositing vapor and nonlocal effects. We study the
three geometries of the incident vapor that are depicted
in Fig. 5.

Our extended model involves two fields f and g, and is
governed by the equations

3f(r,1) _ . OF )
o " orn TB(Velnn)

+CV(Vf)Yg q(r,1), (7)

%szvyr,t)—Ag(r,t)]—B(Vf)2g<r,t), (8)

with F again given by Eq. (3). While the first part of Eq.
(7) is identical to that in Sec. II, the growth mechanism is
different. Now the growth of the f field occurs at the ex-
pense of the g field. The g field represents the local densi-
ty of the incoming particles toward the interface, and Eq.
(8) describes the dynamics of the depositing vapor. The
first part of Eq. (8) is simply the diffusion equation in the
presence of an external force A. In order to analyze the
growth arising from ballistic trajectories D was chosen
much smaller than A so the Ag flux is the primary
mechanism for g field transport. Setting D =0 causes
singularities and destabilizes the numerical solution of
Egs. (7) and (8). The aggregation relies on the conversion
of the g field into the f field as described by the coupling
term B in (7) and (8). The Vf factor in the B term makes
the aggregation operative only within an interfacial
“skin” region of the aggregate with its width proportion-
al to Via. The g factor in the aggregation term ensures
that the growth occurs only if g >0. The B term acts as a
sink for the diffusive field g, and its magnitude is chosen
to be sufficiently large to convert all of the g into f within
the interfacial region effectively leading to g ~0 below
the interface (f~ +1). Shadowing effects are naturally
incorporated in our equations. When the g field trajecto-
ry intercepts the skin, the g field is converted into f, and
any subsequent interception occurs with g =0 and, there-
fore, does not lead to the growth of the shadowed part of
the interface. Note that nonlocal effects are incorporated
in a local way in Eqgs. (7) and (8). One does not need to
monitor the geometry of the interface to incorporate
shadowing—it is implemented dynamically by the g field.
The conversion of the g field into the f field at the vicini-
ty of the interface does not depend crucially on the par-
ticular functional form of the coupling chosen. The rate

FIG. 5. Schematic depiction of the three geometries of rain:
(a) vertical rain, (b) off-vertical rain, and (c) two-rain deposition.
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of growth is effectively equal to the intensity of the in-
coming g field flux. In addition to the growth term, we
introduce a fluctuation term C in Eq. (7) with its ampli-
tude proportional to the square root of the aggregation
rate, following the central limit theorem. The Gaussian
7(r,t) factor is the same as was introduced in Sec. II. In
this manner, we incorporate the fluctuations into the
strength of the incoming g flux, since the aggregation rate
is equal to the intensity of the incoming g flux.

The initial configuration for the f field is the same as in
Sec. II. The g field is equal to g, in the f <0 region and
g =0 when f >0. During the simulations, the g =g, con-
dition is maintained at the upper boundary providing a
constant downward flux A, during the aggregation pro-
cess. In order to take into account the lower capture
probability of the g field in the regions with f close to —1
(predominantly vapor regions), we allow for the conver-
sion only if f>b. In the majority of our simulations we
chose b= —0.2. In some runs we relaxed this restriction
to enhance the mechanism that leads to the columnar in-
stabilities that we discuss below. The method and details
of the numerical solution are the same as in Sec. II. A
majority of the calculations was performed in d=1+1,
and some results in d =241 are also presented.

In order to investigate the simplest case of vertical rain
deposition, we took A= — AZ. The flux is directed verti-
cally downwards, and represents a continuum analog of
the incident particles in ballistic deposition growth. In
addition to simple ballistic deposition, the g particles are
redistributed after deposition via a surface diffusion pro-
cess. We monitor the growth of the interfacial roughness
(the interface is defined as f=0) in d=1+1 and
d=2+1. The interfaces are found to be self-affine with
the roughness exponent a=0.5110.03, and the growth
exponent $=0.32+0.01 in d=1+1 (Fig. 6). This is in
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FIG. 6. Interfacial width as a function of time for vertical
deposition for @ =1 and gy 4, =0.5. Lower data correspond to
d=2+1, lateral size 40X40, averaged over 25 samples. In
d =1+1 (upper curve), the results are for lateral size 150 (aver-
aged over 100 samples).

agreement with the results of the KPZ equation [24]. In
d=2+1 we found B=0.201+0.02 (Fig. 6), which is lower
than the 0.240+0.005 value obtained by numerical solu-
tion of the KPZ equation [28] and found in the previous
section. A result similar to ours was found in off lattice
ballistic deposition simulations [29]. It suggests that
ballistic deposition may not be in the KPZ universality
class for dimensions higher than 1+ 1. However, cross-
over effects could also be responsible for this somehow
lower value of B in d =2+ 1. Due to computational limi-
tations we were unable to estimate ¢ ind =2+1.

Even when the interface, defined by f =0, does not ex-
hibit overhanging configurations when the rain is verti-
cal, the density profiles of the interior of the growing film
show a complex morphology. We can naturally define
the local density of the aggregate d ,=(f +1)/2. With
this definition the f = +1 region corresponds to the max-
imum density equal to 1, while f= —1 represents a zero
density region where the vapor exists. Figure 7 shows
density profiles in the film interior for vertically deposited
rain. The interior of the sample has a rich structure with
visible overhanging configurations. High density regions
shadow lower density regions even in the case of vertical
deposition. The richness of the morphology originates
from destabilizing effects of the nonzero skin width. The
skin represents an active region within which capture of
the depositing particles take place even when the local
normal makes a large angle with the flux directions. This
factor causes faster growth of parts of the interface with
negative curvature leading to instabilities and shadowing.
Similar effects were studied by Mazor et al., [30], where
the faster growth of the hills than of the valleys originat-
ed from the finite size of the particles. To study the phys-

FIG. 7. Density profiles for vertical rain deposition growth
(darkest regions correspond to f=1). The surface tension
coefficient a :%; A,80=4.0. The inset shows the growth of an

initially structured substrate without the noise term present.



53 CONTINUUM MODEL FOR THE GROWTH OF INTERFACES 765

ics of this phenomenon, Mazor et al. proposed a simple
equation that captures instabilities due to the finite size of
the particles. The solution of their equation leads to a
columnar structure of the interface, with the sidewalls of
the columns being almost vertical. Similar effects were
also studied by Golubovic and Karunasiri [25] (see Sec.
1V). In both the above approaches the position of the in-
terface h =h(x,t) is a single-valued function of the lateral
substrate coordinate x. Therefore columns cannot merge
at the top. Our model has no such restriction —the insta-
bility creates columns but they can and do merge as seen
clearly in Fig. 7. Our skin plays a dual role. It provides
the instabilities studied by Mazor et al. but also has a sta-
bilizing merging mechanism. This effect is visually
presented in the inset of Fig. 7, where we allow for the
conversion being operative deep into the f <O region,
thus enhancing the destabilizing skin effect. Now
columns flare outwards and finally merge with each oth-
er. This inset also shows the importance of shadowing
even in this vertical rain situation.

We have reobtained the KPZ results in the limit of low
rain intensity and relatively weak destabilizing skin effect.
On increasing the rain intensity and the effect of the skin,
we observe the development of the columnar structures
of the type shown in the inset of Fig. 7, even when we
start from a flat interface. Figure 8 shows a log-log plot
of the interfacial width vs time for a flux rate 4,g,=1 in
d =1-+1 and with the conversion mechanism operative in
the f=0.8 region. Initially the growth of the width of
the interface follows the KPZ growth exponent. But
later, due to the development of the columns, the B ex-
ponent crosses over to a value of 1. The roughness ex-
ponent ~ 1 has been observed experimentally in a variety
of semiconductor materials grown by MBE at low tem-
peratures [31] and in the evolution of ion-beam sputtering
erosion of graphite [32]. Our findings show clearly why
the KPZ equation is not able to access this aspect of ex-
perimental growth—it simply does not allow for

log, W

FIG. 8. Log-log plot of the interfacial width as a function of
time for vertical deposition with enhanced destabilizing skin
effectind=1+1. a :% and A,g8,=1. Data are averages over
25 samples of lateral size 100. The solid lines are a guide to the
eye and have slopes % and 1, respectively.

overhangs. On the other hand, discrete ballistic deposi-
tion does not incorporate surface diffusion in a natural
manner, and also misses the feature of growth.

Figure 9 shows growth similar to the one in the inset of
Fig. 7 but with 10 times lower rain intensity (upper
panel). Now columns grow vertically upward rather than
outward. With a very low rain intensity (lower panel of
Fig. 9) surface diffusion is able to eliminate the columnar
structure altogether. The interface is essentially flat, and
the interior of the film has no structure. Such transitions
have been observed experimentally in sputter-deposited
films. Figure 10 shows a scanning electron micrograph of
the top interface of a sputtered amorphous germanium
(a-Ge) film grown on smooth glass substrates in a
diffusion-pumped rf sputtering system with a base pres-
sure of 2X 10~ 7 Torr using argon purified with a titanium
getter. The sputtering power was 50 W in all cases. The
sputtering pressure in Ar decreases from the top to the
bottom photograph. The decrease of this pressure corre-
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FIG. 9. Interfaces defined as f =0 for systems similar to the
one shown in the inset of Fig. 7 except for A4,g,=0.4 (upper
panel) and 4,g,=0.02 (lower panel).
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FIG. 10. Scanning electron micrographs of the top interfaces
of sputter deposited amorphous germanium. The white bar
marker denotes 1 um.

sponds to an increase in the ion bombardment rate which
is the primary mechanism for resputtering [33]. The
thermal restructuring of the interface is negligible since
the substrate temperature is equal to about one third of
the melting point. With the high rate of redistribution
after the initial sputtering (lowest photograph) the inter-
face is flat with no structure. The middle photograph
shows the tops of the columns that grow vertically up-
ward, while in the top photograph, corresponding to the
lowest resputtering rate, the columns grow outwardly,
and the top of the film has the characteristic cauliflower
morphology. This set of regimes is produced in our simu-
lations on varying the intensity of the incoming rain. The
more intense rain effectively corresponds to the lower
redistribution rate of the atoms.

Our calculations of nonvertical rain deposition in
d =141 were carried out with constant 4, and 4, mag-
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FIG. 11. Snapshots of interfaces f =0 taken at ¢t =100, 200,
and 500, respectively, for off-vertical rain deposition,
g0 A,=0.6; the noise term was operative only until z=100. (a)
Y =45°. (b) y=60° (c) y=75"
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nitudes chosen to obtain a desired value of
y=tan"!(A4,/A4,) [Fig. 5(b)]. Two distinct morpholo-
gies are found: for small values of y the interfacial
geometry is the same as the y =0 case, whereas for large
values of ¥ columnar growth occurs, with the interface
being neither a self-affine nor a self-similar fractal. For
80 A,=0.6, the crossover from one regime to the other is
found to occur at y,=55°. The columnar structure arises
from nonlocal shadowing effects. This transition is
shown in Fig. 11. The growth process was initially car-
ried out with the noise term present, then the noise was
turned off. Figure 11(a) shows the small ¥ case in which
the interface is smoothened out. Figure 11(b) corre-
sponds to a crossover regime, while Fig. 11(c) for large ¥
shows a columnar structure. Figure 12(a) illustrates the

100
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40

20+

FIG. 12. (a) Density profiles for ballistic flux arriving at angle
45° with respect to the vertical direction on a one-dimensional
substrate. Intensity of the flux go| A|=4 and a=1. The white
region corresponds to f= —1, while the darkest region denotes
f=+1. (b) Scanning electron micrograph of the cross section
of a 20 um-thick a-Ge film showing the substrate (bottom) and
both unetched (middle) and chemically etched morphology (top)
revealing the internal, anisotropic density fluctuations. The
columnar units are inclined at 20° with respect to the substrate
normal.

density profiles of the film for y=45°. The columnar
matchstick morphology is qualitatively the same as ob-
served in sputter-deposited films [see Fig. 12(b)]. It also
suggests that the transition from self-affine to a periodic
columnar structure is not sharp. For ¥y =45° the interface
defined as f =0 does not have a columnar structure even
through the interior of the film has already developed a
columnar morphology. With increasing y, zero density
gaps are created between the columns. The precise rela-
tionship between ¥ and the growth angle of the structure,
Y > depends on the strength of the rain, since there are
two characteristic time scales in the system set by the
strength of the rain and by the diffusional smoothing. A
consequence of the competition between these two time
scales is shown in Fig. 13. Both panels have a bump in
the initial condition and a rain angle of ¥y =45°. For the
lower set of curves (a lower intensity of A4,g=0.6),
diffusion is able to smooth the interface sufficiently to
eliminate the role of shadowing effectively with the
overall interface growing at a uniform rate. On the other
hand, the upper figures ( 4,g =2.4) show not only that
Y¢ is different from the weaker rain case, but also that
the groovelike structure persists at least to the time we
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FIG. 13. Growth of a rectangular bump with off-vertical
deposition at y =45°. The lower panel shows the sequence of in-
terfaces (f=0) for gy A4,=0.6. The noise was turned off for
these simulations. The top panel showing the f=0 contour for
g0 A, =2.4 has been shifted vertically by 200 units for clarity.
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have studied. It is important to note that the nonzero
value of y, arises from the presence of surface tension in
the model.

In sputter deposition experiments, the incoming parti-
cles have a continuous range of incident angles [6]. In or-
der to mimic this effect in a simplified manner, we have
generalized the model to incorporate two incoming rain
directions by utilizing two g fields. We choose to study
the symmetric case [Fig. 5(c)]. The g fields are nonin-
teracting, and each is converted into the f field indepen-
dently at the vicinity of the growing interface. In this
case, three morphological patterns are observed as y is
varied. The first (for small values of y) is similar to the
vertical rain deposition case. Figure 14(a) illustrates the

100 - , 4

80+

60 |

(b}

FIG. 14. (a) Same as Fig. 11(a), but with two ballistic fluxes
arriving symmetrically toward the interface both at an angle of
70° with respect to the vertical direction (go| A;|=g,| A,|=5).
(b) Scanning electron micrograph of a 20-um-thick film in
which the anisotropic columnar morphology (middle) is normal
to the substrate surface and parallel to the average incident an-
gle of the depositing vapor species.

density profiles of the film for ¥ =70°. The matchstick
columnar morphology is clearly present, and indeed is
qualitatively the same as in the sputter-deposited films
when the incidence of the incoming rain is on average
vertical [Fig. 14(b)]. For larger values of y, the interface
is characterized by a well-defined length scale—the
growth structure consists of columns with deep grooves.
Unlike the structure discussed in Sec. II, the columns
grow along the vertical symmetry direction (Fig. 15). On
increasing y further, an additional regime is found in
which the interface is fractal [Fig. 16(a)] with a fractal
dimension of 1.6010.04 [Fig. 16(b)]. The angles at which
the transitions take place are functions of the strength of
the rain, as before. The latter transition to the fractal in-
terface (the critical value of y is around 80° and is only
weakly dependent on the strength of the rain) is analo-
gous to that found recently in a different context by Tang
and Liang [34]. In the fractal interface regime (large y),
we found the temporal growth exponent S~1 in accord
with the visual observation that the pattern grows as a set
of independent separated trees with a competition dwin-
dling the number of trees as time evolves.

In summary, in this section we have presented a frame-
work for the study of the growth and morphology of thin
films. Our analysis allows for overhanging configurations
and is able to accommodate nonlocal shadowing effects.
Further, the density profiles of the growing film are
straightforwardly obtainable with our model, and are in
qualitative accord with experiment. In the simplest case
of vertical rain, our results are in accord with those of
previous approaches, but underscore the importance of

0 50 100 150 200 250 300

FIG. 15. Snapshots of interfaces f =0 taken at =300, 600,
and 900, respectively, for two-rain deposition; ¥y =72° and
g0 A,=0.2. The contours for =600 and 900 have been shifted
vertically by 50 and 150 units, respectively.
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allowing for overhanging configurations. For nonvertical
rain and when two simultaneous rains occur, a rich range
of patterns is observed including a compact, self-affine,
and self-similar interface Our model captures diffusional
processes that are normally ignored in simple simulations,
and is a good starting point for detailed studies of the
effects of adatom mobility and the geometry of incidence
on the structure of thin films.
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FIG. 16. (a) Same as Fig. 14 but for ¥ =85°. Data for t =600
and 900 have been shifted by 75 and 200 units vertically. (b)
Log-log mass-distance relationship for the systems shown in (a)
averaged over ten samples. At later times and longer length
scales, there is a fractal regime.

IV. NON-OVERHANG APPROXIMATION

From the point of view of computational efficiency,
and to facilitate an analytical analysis, it is often con-
venient to work within the no-overhang approximation.
The position of the interface, h, is defined as a single-
valued function of the substrate coordinates. For exam-
ple, asind=1+1, h=h(x,t). The no-overhang approxi-
mation works efficiently as far as overhanging
configurations are not important, at least in a large scale
limit, and nonlocal effects do not play a role. One may
try to incorporate the influence of overhanging
configurations by defining the single-valued position of
the interface, h(x,t), as the highest point of the interface
for a substrate coordinate x, and adding appropriate
terms to the growth equation. One example is the KPZ
equation [24]. The nonlinear term in this equation is able
to mimic the faster growth of the high slope regions. In
ballistic deposition such a phenomenon arises due to the
lower filling of the regions with high slope, since incom-
ing particles in this region stick sidewards to neighboring
columns and are thus more likely to produce overhangs.
In this section we examine models that attempt to explain
the columnar morphology observed in thin films within
the no-overhang approximation and relate them to our
model [Egs. (7) and (8); we refer to this model in this sec-
tion as the f-g model].

First we discuss a model introduced by Mazor et al.
[30] (see also Sec. III). In order to study the origin of the
columnar morphology, they proposed a simple partial
differential equation whose linearized version is given by

BRIt vt +vv2h . ©)

ot

The k >0 term represents the surface diffusion that redis-
tributes particles arriving vertically toward the interface.
The v<0 term mimics the faster growth of the hills
(V2h <0) than of the valleys (V2h >0) due to the finite
size of the particles. The linear stability analysis of
Eq. (9) shows that modes with wavelengths A> A,
=(47%k / —v)lf_2 are unstable, with the fastest growing
mode at A=V'2A,. The nonlinear terms omitted in Eq.
(9) saturate these instabilities [30]. Figure 17(a) shows
snapshots of interfaces generated from Eq. (9) with k=1
and v=—0.1. The characteristic columnar structure
originates from the growth of the most unstable mode.

We now return to the f-g model in which an arbitrary
interfacial topology is permitted, and columns are al-
lowed to merge with each other. As in the ballistic depo-
sition model, due to the development of overhangs the
high slope regions grow faster, since the density of the ag-
gregate is lower there. These effects may be accommo-
dated within the no-overhang approximation by the pres-
ence of the KPZ nonlinear term—A(VA)%. One can
modify Eq. (9) by adding the A term to its right hand side.
It is interesting to note that this modification leads to the
Kuramoto-Sivasinski (KS) equation [35] that was derived
in the context of intrinsic instabilities like flame propaga-
tion. Figure 17(b) shows interfaces generated from the
modified equation with k=1, v=—0.1, and A=0.05. In-
itially the growth is similar to that in Fig. 17(a). Once
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the high slope regions are formed, the nonlinear term
causes changes in the growth pattern. Now columns
spread, merge, and regenerate. This picture is similar to
that obtained in the f-g model (Fig. 7).

Another interesting approach to columnar growth was
proposed by Golubovic and Karunasiri [25]. They con-
sidered a nonlinear version of Eq. (9) with the noise term
present. They showed that even with a positive value of
v, nonlinearities together with the noise term conspire to
produce a columnar structure. The interface develops a
state which is described by an equation similar to spino-
dal decomposition. We now extend their model to situa-
tions in which the incidence of the incoming flux is ob-
lique. The nonlinear equation for the growth of the inter-
face has a general form [36]

Oh kv

aS
ot 4

3S
A3, 1—7 +7, (10)

—va]-
gJn oh

where S= [dxV'g, with g =1+(Vh)? being the measure
of the interfacial area, and A=1/Vg Effj —1(8/
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FIG. 17. (a) Interfaces generated from Eq. (9) taken at =100,
200, 300, and 400. Initially the interface was at A (x,0)=10 with
small random fluctuations added in order to trigger the growth
of columnar instabilities. (b) Same as in (a) but with the KPZ
nonlinear term added to the right hand side of Eq. (9).
Snapshots taken at t =100, 200, . . ., 800.

ox; )[\/‘gg"j('_a/axj )] is the Beltrami-Laplace operator
with g"=38"—(1/g)(dh /3x;)(dh /3dx;) being the inverse
of the metric tensor of the surface. The vector J
represents the incoming flux, and n is normal to the inter-
face. The k term is responsible for the surface diffusion,
whereas the 7 term originates from instabilities due to the
finite size of the particles. 7 is a Gaussian noise with zero
mean and (n(x,t)n(x’,t')) =2D8%x—x')8(t —1').

In d=1+1, in the frame of reference that moves up-
ward with the average position of the interface and slides
due to the nonzero component of the flux tangential to
the interface, h(x,t)——J,t+h(x +J,t), and Eq. (10)
becomes

oh _
—=T

ot

dh 3 3
== | K —k—— -
- igy l » K|+,

1
3
(11)

where J, <0 and J; are the vertical and tangential
components of the flux, respectively, and K =(3/
dx)[(dh /3x)/V g ], with g =1+ (dh /dx )? being the cur-
vature of the interface.

Following Golubovic and Karunasiri, we change the
variables into m =9k /3x. Equation (11) maps into

om _ 9
ot (0,)°F(m)+ O (12)
with
(3, )*m m(d,m)?
F(m)=—k

(1+m22 Farm?yp
+Ti(J,\/1+m2+J”sinh*1m), (13)
om
where the parameter ;=3 is introduced for convenience.
Assuming that changing ¢ =3 into u =2 does not crucial-

ly change the physics described by Eq. (11), Eq. (12) can
be rewritten as

om _ o »,8H  3dn
at (9;) Sm + dx (14)
with
H(m)= [dx |7(J,V1+m?+J sinh~'m)
f) 2
k_Qam) (15)
2 2(1+m?)?

Equations (14) and (15) describe model B [26] con-
served order parameter dynamics which is extensively
used in the study of the spinodal decomposition process.
The steady state distribution of Eq. (14) is governed by
the Boltzman factor exp[ —H (m)/D]. The correspond-
ing partition function is

Z=11 f_mwdm(x)exp[—H(m)/D] ) (16)

With the change of variables m (x)=tan©O(x), and assum-
ing that the noise in Eq. (11) is short range correlated
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with a cutoff length for fluctuations equal to a, the parti-
tion function maps into

Z=1]1 f_””/zdemexp[He,f(e)/D] (17)
with
_ z 1+sinO(x)
Her(©)= fdx lT cosO(x) +Jjln cosO(x)

+ g[axe(x)]u %ln[cose(x)] ] .

(18)

Even though the coefficient 7J, is negative, gravitational
effects or the condensation-evaporation process can
effectively change the sign of this coefficient. The 7J,
coefficient breaks the inversion symmetry, x — —x, and is
not influenced by the above phenomena since they
preserve this symmetry. Assuming that 7J, is positive
with J 1 =0, we reobtain the Golubovic-Karunasiri re-
sults: If 7J, >2D /a, H 4 has a single minimum at ©=0.
The presence of the J, term simply shifts the minimum to
6++0. If 7J,<2D /a, H.4 has two minima at the two
symmetric values ©,==x7J,/2D/a [see Fig. 18(a)].
When J “?50, one minimum is lowered while the other is
shifted up [see Fig. 18(b)]. Thus J, is akin to a magnetic
field.

We have confirmed this observation by a numerical
solution of Eq. (11). The details of the calculation are
similar to that in Ref. [25]. We generate a short-range-
correlated noise by eliminating short wavelength com-
ponents of an uncorrelated Gaussian noise with the use of
the fast Fourier transform (FFT). We choose the noise
strength D =0.1, cutoff length for fluctuations a =3, and
the coefficient k =1. It was estimated in Ref. [25] that
with these conditions the transition occurs at 7J, ~0.03.
Figure 19(a) shows the evolution of the probability distri-
bution function of O(x,t¢) and P(©), for 7J,=0.01 and
J,=0. The system is in the two phase region. Initially,
P(O) has a single maximum that spreads and finally splits
into two symmetric maxima. Figure 19(b) shows an evo-
lution similar to the one in Fig. 18(a), but with the ob-
lique flux term 7J, present. Initially, the evolution is the
same as before. However, at late stages P(©) shows two
unequal maxima. This is in accord with the analysis we

have presented above. The higher and lower maxima in
P(O) correspond to the lower and higher minima, respec-
tively, in H 4(©).

The shape of P(©) with an oblique flux present corre-
sponds to the columnar structure of the interface with
the column walls being steeper on the side exposed to the
flux. It is in qualitative accord with the results obtained
in the f-g model. Figure 11(b) shows such a situation.
Overhanging configurations are not present, and the
steep parts of the interface exposed to the rain can be ob-
served. However, the no-overhang approximation breaks
down when shadowing effects become important. Figure
11(c) shows a columnar structure with overhangs present.
The columnar walls are essentially shadowed from the
growth and only the column tops are exposed to the rain.
The direction of the growth is different from that of the
flux while in the no-overhang approximation they are the
same.

In this section, we have discussed models for columnar
morphology within the no-overhang approximation.
Such an approach is able to elucidate the origin of the ini-
tial instabilities that lead to the development of columns.
When the influence of the overhangs is only local, the
nonlinear KPZ term captures the essential features of the
growth. We have shown that this approximation is also
able to capture the main trends in the pattern changes
due to an oblique incident flux. The no-overhang approx-
imation breaks down when nonlocal effects become im-
portant. Examples include the development of outward
flaring columns in the presence of intense vertical rain
(see the inset in Fig. 7), inclined columnar structures ob-
served when an incident incoming flux of sufficient
strength makes a large angle with the normal to the sub-
strate, and the set of patterns observed in the f-g model
when the incoming rain is no longer unidirectional.

V. DIFFUSION-LIMITED AGGREGATION

A number of growing structures ranging from viscous
fingering, solidification of an undercooled liquid, dielec-
tric breakdown, chemical dissolution, and electrodeposi-
tion have striking similarities [10-18]. They all originate
within a unified framework of the diffusion-limited-
aggregation (DLA) process. The discrete version of DLA
was proposed by Witten and Sander [10]. In their model,
the aggregating particles move randomly one at a time,
and at the first encounter deposit on the aggregate. A

FIG. 18. Plot of H as a function of ©
given by Eq. (18) in the 0 < 7J, <2D /a regime.
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FIG. 19. (a) Evolution of P(©) for Eq. (11)
with 7J,=0.01 and 7J;=0. Plots have been
obtained by dividing the interval [ —, ] into
20 equals bins, and by counting the number of
sites x for which ©(x) belongs to a given bin.
P(O) is normalized in such a way that the sum
over bin heights is equal to 1. Data are for la-
teral size 2048, averaged over five samples. (b)
Same as (a), but with J| =0.005.
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number of modified versions of this process with different
attachment procedures have been developed. In a contin-
uum version of the problem, one needs to solve Laplace’s
equation—a steady state limit of the diffusion
equation—with suitable boundary conditions. The
growth rate is taken as being proportional to the gradient
of the field at the interface, which represents the incom-
ing flux of the particles toward the interface [11,37].
Both techniques require the monitoring of the interface.
In the discrete problem, one needs to know when the par-
ticle touches the aggregate. In the Laplacian approach
the boundary conditions are defined at the interface.

It is straightforward to modify the model presented in
Sec. III to include DLA-type phenomena within its
description. We have already developed the machinery
for both an arbitrary topology of the interface with its
dynamics and the way to incorporate the dynamics of the
aggregating vapor. We just need to substitute the ballis-
tic flux with a diffusive flux that is responsible for the
transport of the aggregating field.

Our equations are modified to

Af(x,) _go_ OF

Y S5/(r.0) +J(r,t), (19)
%zszg(rt)—J(r,t) . (20)

The first part of Eq. (19) and the free energy F is the
same as that described previously. The interaction term
J >0 leads to the growth of f and decay of g such that
f +gis a conserved quantity, and changes only due to the
sources of the g field at the boundary. To simulate
different experimental situations we studied two interac-
tion mechanisms [38],

Ji(r,t)=—Vf-DVg-n(r,t) (21)

and

Jy(r,t)=D,-g|Vf|*n(r,1), (22)

where 7(r,?) is a Gaussian noise with a nonzero average
value ¥ >0 and width W. For the planar geometry the
initial and the boundary conditions for f are the same as
for ballistic deposition calculations. The g field initially
was chosen to be g(z)=gyz/z, for f <0, and g =0 for
f >0, where z, is the position of the upper boundary
with the f =0 interface located at z=0. During simula-
tion we kept g at the upper boundary constant, or alter-
natively we varied g at the boundary to maintain a con-
stant flux —DVg. We also carried out circular geometry
simulations for growth starting from an initial seed locat-
ed at the middle of the sample and the g field arriving
from the edges of the system.

The physics of the aggregation again relies on the con-
version of the g field into the f field which causes the
f=+1 regions to grow, thereby advancing the f =0 in-
terface. The g field is transported by the diffusive flux
—DVg toward the interfacial region where the conver-
sion occurs. After the conversion, the surface tension
built into Eq. (19) redistributes the aggregated g field.
Due to the Vf factor, the J; and J, terms are operative

only in the interfacial region. They are the source of
growth of the f field. The J term with negative sign in
Eq. (20) takes into account the removal of the g field.
The —DVg factor in the J, growth term represents the
analog of boundary conditions of the Laplacian solution
and ensures that the aggregation rate is proportional to
the incoming flux magnitude. Thus we implement
dynamically the condition of g being zero at the interface,
which we shall show leads to typical DLA growth pat-
terns. The J, growth term is proportional to the g field
density itself and leads to g being nonzero at the interface
and allows for a diffusive flux with a nonzero component
tangential to the interface.

Our approach is similar to the phase field model [39]
where two coupled differential equations are used to de-
scribe the solidification process of an undercooled liquid.
In that case, one field describes the temperature and the
other phase field is used to characterize the solid and
liquid phases [40]. In a context somewhat more similar
to the present work, several authors [41] have studied
coupled differential equations to monitor the dynamics of
the growth process. In all aggregation models, the sum
of the diffusive and aggregating fields (f and g) is con-
served. The noninteractive part of the phase field equa-
tion is nonconservative—both solidification and melting
are allowed. In contrast, in our model aggregation is uni-
directional. Our model decouples the surface diffusion
process from the conversion process, and aggregated par-
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FIG. 20. Sequence of interfaces (defined as f=0) for growth
from small square located at the center of the sample using the
J-interaction mechanism. The noise width W is set to zero,
and g is held fixed temporally in an inhomogeneous manner on
the square boundary of the figure, so that initially V2g =0 with
g(r=75)=0.5 and g(r=5)=0. The surface tension term

d*-z‘.
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ticles are redistributed via conserved dynamics.

We performed our simulations for both planar and cir-
cular geometry. Details of the simulations are the same
as discussed previously. For computational ease, the in-
teraction was restricted to the |Vf| <0.8 region, and the
remnants of the g field ( <2%) were converted into f in
the f > 0.8 region.

First we utilize the J, growth mechanism. Figure 20
shows a typical pattern in the absence of noise in a circu-
lar geometry, which is indeed similar to structures ob-
tained in conventional Laplacian growth [42]. While the
initial square symmetry is destroyed by an infinitesimal
noise term, finger splitting is operational even without the
noise. The typical fingering instability is shown in Fig.
21(a). We studied the Fourier spectrum of the growing
interface, confirming the exponential growth of the unsta-
ble modes with the growth rate depending on the wave
vector approximately in the form proposed by Mullins
and Sekerka [43]. In Fig. 21(b) late stages of growth for
planar geometry are presented. Successive splittings of
the fingers in order to maintain a characteristic finger
width, screening of the lower branches by higher ones,
and the development of an intricate treelike pattern are
discernible in the figure.

The principal length scale introduced by the surface
tension parameter is proportional to Va. By rescaling
Egs. (19) and (20) one can see that this is an exact state-
ment, although we also verified this result numerically.

The characteristic width of the fingers also depends on
the boundary flux rate. We find that size of the fingers
decreases with increasing flux approximately as the
(flux)~'/? [44]—our measurements give an exponent
0.45+0.05. This is simply the consequence of the fact
that the flux rate is a measure of the inverse time allowed
for the diffusional relaxation. Despite the finger width
dependence on the flux rate, we found the fractal dimen-
sion remains unchanged from the one obtained in lattice
simulations of DLA. This is particularly interesting,
since it is known that in solidification processes the scal-
ing of the growth velocity depends on the nature of the
cutoff length scale [45]. From this point of view our
model is more akin to a diffusion transition model [46].
However, in solidification, undercooling occurs globally
in the liquid phase, while our model involves diffusion of
the particles from the boundary.

Figure 22(a) shows a typical pattern obtained in circu-
lar geometry which is convenient for the measurement of
the fractal dimension. A power law mass-radius depen-
dence leads to a fractal dimension equal to 1.65+0.05
[see Fig. 22(b)], which is similar to the value obtained in
standard lattice DLA simulations. When the value of g is
initially higher, the Laplacian solution is no longer
valid—the growth is so rapid that the diffusive field is
unable to adjust to the quasistationary solution. Figure
23 shows a cluster with a higher filling than the one re-
sulting from a lower g field density. It is not possible to

FIG. 21. (a) Initial stages of growth starting
from a plane interface with the J, mechanism.
a=1i. W/V=1. The flux of the g field was
held constant during the simulation. (b) Late
stages of growth of the system similar to that
shown in (a).
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deduce the fractal dimension in this case. At a short
length scale, the effective fractal dimension is higher than
before, while at a large length scale the effective fractal
dimension seems to increase further. This is not unex-
pected since the density of random walkers is effectively
nonzero, contrary to conventional lattice DLA simula-
tions where the random walker density is zero.

In electrochemical deposition experiments, when the
rate of deposition is very slow, the local growth effects
compete with nonlocal Laplacian effects [18]. With a
higher current density the patterns resemble a typical
DLA structure, while with low current density a charac-
teristic columnar morphology is observed—there is no
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FIG. 22. (a) Circular geometry growth with the J, interaction
mechanism. At t=0, g(r= 125)=3, g(r=3)=0, a =~18—, and
W /V=1%. The boundary condition is as in Fig. 19. (b) Log-log
plot of a radius-mass relationship for the systems shown in (a)

averaged over ten samples.
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FIG. 23. Same as Fig. 21(a), except g(r=125)=1.

side branching, and crevices between the columns are
narrow. The physical reason for this is that at low
current densities the deposition is slowed down by the po-
tential barrier of water dipole molecules inhibiting the ac-
tivation of cations in the interface region. The growth
rate then would be expected to be proportional to the
density of the g field rather then to the flux. This mecha-
nism is captured by the J, growth form. Figure 24 shows
fingering that bears a striking resemblance to the experi-
mental one—the fingers are much wider than those in
Fig. 21(a) and the crevices are narrower. The g field is no
longer zero at the interface, and is higher where the
growth rate is larger. This causes a diffusion component
parallel to the interface to fill the voids between the
columns. This effect can be accentuated by repelling the
g field from the interface (as in the experiment), thus
slowing the growth rate and allowing tangential diffusion
to smooth the interface. We confirmed this by simulation
where Eq. (19) was replaced by

a—gért’—t)=v'(DVg+Agi)—J2(r,t). 23)

Here the diffusive flux —DVg is complemented with a
force-biased flux — AgVf. The Vf vector is normal to
the interface directed towards the f=+1 aggregate re-
gion and is present only in the vicinity of the interface.
For a high magnitude of the repulsive force, the neigh-
boring fingers merge leaving holes behind (Fig. 25) and el-
iminating DLA-type instabilities. The pattern obtained
in this regime is strikingly similar to experimental struc-
tures for low current densities [18].

In this section we have utilized our model to describe
DLA-type phenomena. In the limit of a low density of
random walkers our model is in an agreement with the
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Z | S FIG. 24. Initial stages of growth starting
Ly e from a plane interface with the J, mechanism.
a0 b . a=1 W/V=1. The flux of the g field at the
boundary was held constant during the simula-
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standard DLA or Laplacian growth model. Our descrip- ACKNOWLEDGMENTS

tion is able to incorporate surface tension, and a nonzero
density of random walkers in a natural manner. A
straightforward modification allows the study of situa-
tions in which particles interact with the aggregate as in
electrodeposition experiments.
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FIG. 25. Same as Fig. 23, but with an additional force repel-
ling the diffusive particles from the growing aggregate [Eq. (23)].
The three panels show the effect of increasing the force magni-
tude (the force is highest for the bottom panel). The vertical
coordinates of the middle and top panels have been shifted by
100 and 200 units, respectively.
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APPENDIX

In this appendix we will show the nonconserved form
of Eq. (2), with the I, growth mechanism, i.e.,

df(r,t) _ . OF
o raf(r,t) +C,|IVf|+D (1,1 . (A1)
where
I B WPE S 2
F=[ S a (VP
= [[V(H)+a(Vf)]dv (A2)

is indeed equivalent to the KPZ equation for the descrip-
tion of the interface evolution, at least in the limit of
small a.

To this end, we follow Bausch et al. [47], write
r=(R,z), and decompose f(R,z,t) into two parts:

F(R,z,0)=d V—IE%_T%;% J + MRz,  (A3)
where MM (x)=tanh(x) is the kink solution satisfying

M +dV (M) /dM=0 , (A4)
with antiperiodic boundary conditions M==%1 as

x—to. h(R,t) describes the fluctuations of the inter-
face, while N(R,z,t) contains all fluctuations of f not in-
cluded in A.
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After a change of variables R—R’, 1/V al(z
—h(R,1))/(V/ 1+ |Vgh|*)—ss, in the limit of small a we
may write Eq. (A1) as

1 & r r Vih
— =+ — L R
Va vz a[ dv(m)/dm Va Vg
I Vif-Vgg v ,
Ve  va (sM”+M")
¢y D, (R,z,1)
——=M'—— M T2 4 0(a0)
Va /4 g/ a’)

(AS)

where g =1+ Vh.

The first term on the right-hand side is zero due to Eq.
(A4). To project out all fluctuations not included in A, we
multiply both sides by #M' and integrate over ds [47], and
obtain

A Vih  Vgh-Vging

-2 —r X
Vg Vg 2Vg !

D,0(R,?)
g1/4 ’

(A6)

where (O(R,1)0(R’,1')) =28(R—R")8(t —1").

Notice that this is the reparametrization invariant [48]
equation whose leading term in VXh leads to the KPZ
equation.
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FIG. 10. Scanning electron micrographs of the top interfaces
of sputter deposited amorphous germanium. The white bar
marker denotes 1 um.
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FIG. 12. (a) Density profiles for ballistic flux arriving at angle
45° with respect to the vertical direction on a one-dimensional
substrate. Intensity of the flux go| A|=4 and a=1. The white
region corresponds to f= —1, while the darkest region denotes
f=-+1. (b) Scanning electron micrograph of the cross section
of a 20 um-thick a-Ge film showing the substrate (bottom) and
both unetched (middle) and chemically etched morphology (top)
revealing the internal, anisotropic density fluctuations. The
columnar units are inclined at 20° with respect to the substrate
normal.
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FIG. 14. (a) Same as Fig. 11(a), but with two ballistic fluxes
arriving symmetrically toward the interface both at an angle of
70° with respect to the vertical direction (go| A |=g,| A, =5).
(b) Scanning electron micrograph of a 20-um-thick film in
which the anisotropic columnar morphology (middle) is normal
to the substrate surface and parallel to the average incident an-
gle of the depositing vapor species.



FIG. 7. Density profiles for vertical rain deposition growth
(darkest regions correspond to f=1). The surface tension
coefficient a = %; A.g,=4.0. The inset shows the growth of an

initially structured substrate without the noise term present.



